首页> 外文OA文献 >Effective-one-body waveforms calibrated to numerical relativity simulations: coalescence of non-precessing, spinning, equal-mass black holes
【2h】

Effective-one-body waveforms calibrated to numerical relativity simulations: coalescence of non-precessing, spinning, equal-mass black holes

机译:有效的单体波形校准到数值相对论   模拟:非进动,旋转,等质量黑洞的聚结

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present the first attempt at calibrating the effective-one-body (EOB)model to accurate numerical-relativity simulations of spinning, non-precessingblack-hole binaries. Aligning the EOB and numerical waveforms at low frequencyover a time interval of 1000M, we first estimate the phase and amplitude errorsin the numerical waveforms and then minimize the difference between numericaland EOB waveforms by calibrating a handful of EOB-adjustable parameters. In theequal-mass, spin aligned case, we find that phase and fractional amplitudedifferences between the numerical and EOB (2,2) mode can be reduced to 0.01radians and 1%, respectively, over the entire inspiral waveforms. In theequal-mass, spin anti-aligned case, these differences can be reduced to 0.13radians and 1% during inspiral and plunge, and to 0.4 radians and 10% duringmerger and ringdown. The waveform agreement is within numerical errors in thespin aligned case while slightly over numerical errors in the spin anti-alignedcase. Using Enhanced LIGO and Advanced LIGO noise curves, we find that theoverlap between the EOB and the numerical (2,2) mode, maximized over theinitial phase and time of arrival, is larger than 0.999 for binaries with totalmass 30-200Ms. In addition to the leading (2,2) mode, we compare foursubleading modes. We find good amplitude and frequency agreements between theEOB and numerical modes for both spin configurations considered, except for the(3,2) mode in the spin anti-aligned case. We believe that the larger differencein the (3,2) mode is due to the lack of knowledge of post-Newtonian spineffects in the higher modes.
机译:我们提出了对有效的单身(EOB)模型进行校准的首次尝试,以对旋转的,无进动的黑洞二进制文件进行精确的数值相对论仿真。在1000M的时间间隔内以较低的频率对齐EOB和数字波形,我们首先估计数字波形中的相位和幅度误差,然后通过校准一些EOB可调参数来最小化数字波形和EOB波形之间的差异。在等质量,自旋对齐的情况下,我们发现,在整个吸气波形上,数值模式和EOB(2,2)模式之间的相位和分数幅度差异可以分别减小到0.01弧度和1%。在等质量旋转反对齐的情况下,在吸气和骤降期间,这些差异可以减小到0.13弧度和1%,在合并和下降时可以减小到0.4弧度和10%。在自旋对齐情况下,波形一致性在数值误差范围内,而在自旋反对齐情况下,波形一致性略高于数值误差。使用增强型LIGO和高级LIGO噪声曲线,我们发现,对于总质量为30-200Ms的二进制文件,EOB和数值(2,2)模式之间的重叠在初始阶段和到达时间上最大化,大于0.999。除了前导(2,2)模式外,我们还比较了四个子前导模式。对于自旋反对准情况下的(3,2)模式,我们考虑了两种自旋配置的EOB和数值模式之间的良好幅度和频率一致性。我们认为(3,2)模式的较大差异是由于缺乏对较高模式下的牛顿后自旋效应的了解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号